

8TH INTERNATIONAL CONFERENCE ON
PEROVSKITE SOLAR CELLS AND
OPTOELECTRONICS - PSCO

20
25

List of Posters

September, 15 – 18 2025

Hotel Giò Wine e Jazz Area, Congress Center
Perugia, Italy

Nº	Name, Organization	Title
1	Abdul Mannan Majeed Vilnius University, Lithuania	<i>Influence of Zinc Alloying on the Power Conversion Efficiency of Mixed Metal Halide Perovskite Solar Cells</i>
2	Aistė Jegorovė Kaunas University of Technology, Lithuania	<i>Ferrocene-Based Hole Transporting Materials for Efficient Perovskite Solar Cells</i>
3	Alberto Garcia Fernandez CICA of University of A Coruña, Spain	<i>Exploring Natural Language Processing Methods to Predict Recycling Strategies for Perovskite Solar Cells</i>
4	Allison Arber Oxford University, United Kingdom	<i>Ion Migration and Dopant Effects in the Gamma-CsPbI₃ Perovskite Solar Cell Material: Atomistic Insights through Ab Initio and Machine Learning Methods</i>
5	Amanda Covarelli University of Perugia, Italy	<i>Additives in Metal-Halide Perovskite Solar Cells: a Computational Study</i>
6	Brian Wieliczka University of Oxford, United Kingdom	<i>Tandem Photovoltaic Opportunities Unlocked by Spectral Shaping Via Quantum Cutting</i>
7	Clara Lizeth Rojas Rincon Universidad Industrial de Santander, Colombia	<i>Statistical Comparison Between SCAPS Based Simulations and PCE Values of Synthesized Perovskite Solar Cells</i>
8	Cristina Teixeira CENIMAT i3N, NOVA University of Lisbon, Portugal	<i>Supply Chain Resilience in Advanced Energy Technologies: a Europe-Focused Assessment</i>
9	Daphne Dekker AMOLF, The Netherlands	<i>Greener and More Stable Mixed Lead-Tin Halide Perovskites Using DMS</i>
10	Debendra Prasad Panda University of Naples Federico II, Italy	<i>Suppressing the Stereochemically Active Lone Pair Expression in Tin Perovskite Solar Cells</i>
11	Dilek Çırak Solar Energy Institute, Ege University, Turkey	<i>Unveiling the Future of Perovskite Solar Cells: the Promising Potential of Additive for Precursor Stability</i>

12	Duygu Akin Kara Helmholtz Zentrum Berlin, Germany	<i>Toward Stable and Efficient Flexible Perovskite Solar Cells Via Surface Passivation with Bulky Organic Cations</i>
13	Estelle Cariou IPVF, France	<i>Slot Die Coating of Self Assembled Monolayers for Inverted Perovskite Solar Cells</i>
14	Felipe Vinocour Pacheco TNO, The Netherlands	<i>Making Sheet-To-Sheet Happen: Slot-Die Coated Perovskite Solar Cells With Benign Solvents</i>
15	Filip Dybała Wrocław University of Science and Technology, Poland	<i>Excitonic Properties of Two-Dimensional Metal-Halide Perovskites EA_2PbI_4 Under Hydrostatic Pressure</i>
16	Giryun Kim Chungnam National University, Korea, South	<i>All-Vacuum Processed Silicon/Perovskite Monolithic Tandem Solar Cell</i>
17	Gulay Zeynep Gunel Solar Energy Institute, Ege University, Turkey	<i>Functionalized P-Type Triazatruxene-Based Selfassembly Monolayers for Perovskite Solar Cells</i>
18	Gyuri Yu Sangmyung University, Korea, South	<i>Enhanced Long-Term Stability of Perovskite Solar Cells Employing a Benzodithiophene Derivative Based Dopant-Free Hole Transporting Layer</i>
19	Hanmandlu Chintam Uppsala University, Sweden	<i>Interfacial Defect Mitigation Via Methyl Diphosphonic Acid Bottom Surface Passivation For Efficient And Stable Perovskite Solar Cells</i>
20	Hisanobu Kameyama Chiba University, Japan	<i>Phase Segregation Behavior in Mixed Halide Perovskites: Determination of Thermally and Carrier-Driven Binodal Curves</i>
21	Hyeji Han Chungnam National University, Korea, South	<i>Study the Lead Halide Perovskite Crystallization Via Optoelectronic Analysis</i>
22	Ismael Fernandez-Guillen University of Valencia, Spain	<i>Perovskite Thin Single Crystals for Advanced Devices and Mechanistic Insights via Impedance Spectroscopy</i>

23	Jan-Heinrich Littmann Justus-Liebig-University Giessen, Germany	<i>Self-Trapped Exciton Diffusion in a Lead-Free Two-Dimensional Hybrid Perovskite</i>
24	Jonas Hiemstra Swansea University, United Kingdom	<i>Protein Shakes and Perovskites: Amino Acid Additives for Defect Passivation</i>
25	Julia Prumbs Uppsala university, Sweden	<i>Dynamics and Energetics of Photon-to-Electron Conversion in Solar Cells Using X-Ray Photoelectron Spectroscopy</i>
26	Kamil Misztal Wrocław University of Science and Technology, Poland	<i>New Two-Dimensional Organic-Inorganic Hybrid Perovskites Exhibiting Emission Switching Under Varying Excitation Power</i>
27	Kevin O. Pérez-Becerra Cinvestav Zacatenco, México	<i>Hybrid Diagonal Approximation In Time-Dependent Auxiliary Density Functional Theory</i>
28	Konstantina Armadorou University of Cambridge, United Kingdom	<i>Identifying Decay Law Profiles in Lead Halide Perovskite Solar Cells Via Layer-by-Layer Comparison</i>
29	Lars Sonneveld AMOLF, The Netherlands	<i>Resolving Local Structure in Metal Halide Perovskites Using SEM-EBSD by Minimizing Beam Damage</i>
30	Lee HyunWook Sangmyung University, Korea, South	<i>Grignard-Derived Functionalization of 5h-Dithieno[3,2b:2',3'-d]Pyran for Hole Transport Layers in Perovskite Solar Cells</i>
31	Lei Zhu Oxford University, United Kingdom	<i>Advancing perovskite stability through molecular passivation: insights from atomistic simulations</i>
32	Lorenzo Malavasi University of Pavia, Italy	<i>Chiral Hybrid Cobalt Halides: Synthesis, Structural Characterization, and Chiro-Optical Properties</i>
33	Lotte Kortstee Denmarks Technical University, Denmark	<i>The Role of Grain Boundaries in Defect Trapping in Halide Perovskites: a Case Study in CsPbBr_3 and CsPbI_3</i>

34	Madsar Hameed Queen Mary University of London, United Kingdom	<i>Investigation of Perovskite Defects Reduction and Non- Radiative Recombination Kinetics Using In-Situ PL Measurements Under Aerosol Treatment</i>
35	Manuela Ferrara ENEA, Italy	<i>Surface Passivation Strategies for Co-Evaporated $MaPbI_3$ Solar Cells</i>
36	Maximilian Spies University of Bayreuth, Germany	<i>Solvated PbI_2 Clusters Preceding the Crystallization of Lead Halide Perovskites – a UV/Vis In-Situ Study</i>
37	Maximiliano Senno University of Valencia, Spain	<i>Stability Testing of Vacuum-Processed Perovskite Solar Cells: from Lab to Field</i>
38	Morena Cervino Jaume I University, Spain	<i>Cesium-formamidinium lead iodide-based inverted perovskite solar cells for building integration</i>
39	Müge Özdemir Solar Energy Institute, Ege University, Turkey	<i>Scalable Fabrication of Perovskite Quantum Dot Layers with Inkjet Printing</i>
40	Nao Harada IPVF, France	<i>Large Size Perovskite Module Performance Analysis by Hyperspectral Electroluminescence and Electroluminescence</i>
41	Peter Pasmans Eternal Sun, The Netherlands	<i>Inline IV Characterization of Commercial Perovskite Solar Modules</i>
42	Pranava Sai Aravinda Pakala Uppsala University, Sweden	<i>Dye-Assisted Interfacial Passivation in Perovskite Solar Cells for Reduced Recombination and Enhanced Efficiency</i>
43	Qimu Yuan Oxford University, United Kingdom	<i>Atomistic and Photo-Physical Insights Into Vapourdeposited $CsPbBr_3$ and $CsPbI_3$ Perovskites for Emission and Phase-Stability Enhancement</i>
44	Rafał Bartoszewicz Wroclaw University of Science and Technology, Poland	<i>Giant Band Gap Narrowing Under Hydrostatic Pressure in $(4FP)_2SnI_4$ Halide Perovskite</i>

45	Ricardo Razera CSEM, Switzerland	<i>Impact of Solvent System and Quenching Kinetics on Light Soaking Stability of Perovskite Solar Cells</i>
46	Robert Kudrawiec Wrocław University of Science and Technology, Poland	<i>Thermochromism Versus Piezochromism in $(PMA)_2CuX_4$ ($X=Br, Cl$) Halide Perovskites</i>
47	Ruirui Wu University of Cagliari, Italy	<i>Reversible Thermochromism in Cs_4PbBr_6 Microcrystals/$CsPbBr_3$ Nanocrystals Based on the Synergistic Interaction Between Cesium Ions and $PbBr_6$ Octahedra</i>
48	Ruohan Zhao Oxford University, United Kingdom	<i>From Solution to Thin-Film: Approaches to Improving the Optoelectronic Properties of Halide Perovskites</i>
49	Sangeetha Ashok Kumar CHOSE Lab, University of Rome Tor Vergata, Italy	<i>Photon Enhanced Thermionic Emitter with Perovskite Cathode for Conversion of Concentrated Sunlight</i>
50	Sarang Srikanth Independent Researcher/Student, United States	<i>Optoelectronic Simulation-Based Performance Improvement for $FAPbI_3$ Organic-Inorganic Solar Cells Utilizing SnO_2/Graphene Quantum Dot Modified Electron Transport Layer</i>
51	Sebastian Hedwig University of Applied Sciences and Arts Northwestern Switzerland FHNW, Switzerland	<i>Indium and Silver Recovery From Perovskite Thin Film Solar Cell Waste by Means of Nanofiltration</i>
52	Sevdiye Basak Turgut Solar Energy Institute, Ege University, Turkey	<i>Utilization of Ionic Liquids in Triple-Cation Perovskite Solar Cells</i>
53	Sihan Li Nankai University, China	<i>Improved Surface Hydrophobicity of Self-Assembled Transport Layers Enables Perovskite/Silicon Tandem Solar Cells with Efficiency Approaching 31%</i>
54	Silvia Motti University of Southampton, United Kingdom	<i>Charge carrier dynamics in quasi-2D/3D perovskite heterostructures</i>
55	Simona Fantacci CNR-SCITEC "G.Natta" Perugia, Italy	<i>2D or not 2D, that is the question</i>

56	Siwon Yun Chungnam National University, Korea, South	<i>Understanding Charge Carrier Dynamics in Perovskite Thin Film Via Electric Method</i>
57	Sung Yong Bae University of Oxford, United Kingdom	<i>Ligand-Engineered Superlattice Formation in CsPbBr₃ Nanoplatelets for Linear Polarization</i>
58	Tianshan Xu University of Bayreuth, Germany	<i>MAPbBr₃-MAPbI₃ gradient films prepared at room temperature by Powder Aerosol Deposition (PAD) for controlled ion and electron transport</i>
59	Till Scholz University of Bayreuth, Germany	<i>Defect Chemical Engineering in Doped MAPbI₃ Films Prepared from Mechanochemically Synthesized Powders via Powder Aerosol Deposition</i>
60	Tim Schramm Leibniz Institute for Solid State and Materials Research Dresden, IFW, Germany	<i>Electrical Doping of Metal Halide Perovskites</i>
61	Tina Wahl Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Germany	<i>Investigation of Scalable Techniques and Green Solvents for the Two-Step Deposition of Perovskite Solar Cells</i>
62	Ting Pan LTI, KIT, Germany	<i>In-Situ Characterization for Controlled Crystallization Dynamics in Vacuum-Assisted Growth of Sn-Pb Perovskite Films for Efficient Scalable Solar Cells</i>
63	Tobias Siegert University of Bayreuth, Germany	<i>Modelling Thermal Halide Exchange of Perovskite Powders With and Without BMIMBF₄ from an Interdiffusion Perspective</i>
64	Verena Barnscheidt Institute for Solar Energy Research in Hamelin (ISFH), Germany	<i>Fully Evaporated Perovskite Solar Cells with 18.7% Efficiency and Comparison of Wet Chemical and Evaporated Edai₂ Interface Passivation</i>
65	Victor Sagra Instituto de Ciencia de los Materiales- Universidad de Valencia, Spain	<i>Nickel acetate-assisted stabilization of γ-CsPbI₃ for efficient and stable inorganic perovskite solar cell</i>
66	Wonjong Lee Chungnam National University, Korea, South	<i>Investigating Mechanism of Enhanced Photostability in Passivated Perovskite Solar Cells Via Anti-Solvent Additives</i>

67	Wonjun Go Sangmyung University, Korea, South	<i>Design of a Thienothiophene-Derived Hole Transporting Material for Perovskite Solar Cells</i>
68	Yiting Jiang City University of Hong Kong, China	<i>Crystallization Kinetics Regulation for Strain and Morphology Management Enables Efficient Tin Perovskite Solar Cells</i>
69	You Gao Nankai University, China	<i>Shear Flow Strategy for Coating Homogeneity of Organic Materials in Perovskite Solar Cells and Modules</i>
70	Yuan Tian Westlake University, China	<i>High-Entropy Hybrid Perovskites Woven by Disordered Organic Moieties for Photovoltaics</i>
71	Zongbao Zhang IFW Dresden, Germany	<i>Additive Engineering for Efficient Perovskite Solar Cells Via Single Source Evaporation</i>

SPONSORS

PSCO 2025

DJK Europe GmbH

VALHALLA

X&X TECHNOLOGY

